

INTRODUCTION

Combinant plus de 50 ans d'expérience en solutions de blindage CEM, de dissipation thermique et d'étanchéité environnementale, les équipes GETELEC conçoivent et délivrent des solutions innovantes dédiées au secteur du transport.

La complexité de ce secteur nécessite des connaissances spécifiques envers les diverses infrastructures, aussi bien pour les équipements roulants que pour la signalisation ferroviaire. Aujourd'hui, l'industrie du transport représente une activité stratégique où chaque acteur essaie de se renforcer.

GETELEC met à disposition une équipe de Recherche et Développement qui, grâce à une veille technologique quotidienne, conçoit des nouvelles solutions de blindage hyperfréquences, de dissipation thermique et d'étanchéité environnementale répondant aux exigences de la norme EN 45545-2.

LES SYSTEMES EMBARQUES

Les systèmes embarqués dans le transport ferroviaire sont nombreux et indispensables. Ils sont souvent confrontés à des problématiques liées à la corrosion, l'humidité et la compatibilité électromagnétique.

GETELEC développe des mélanges conducteurs pour vous garantir un blindage CEM adapté à votre environnement ainsi que des solutions spécifiques de dissipation de chaleur.

MATERIELS ROULANTS

Les matériels roulants sont exposés à des environnements sévères représentant des défis de conception pour les ingénieurs.

En enrichissant sa gamme de mélanges conducteurs et d'élastomères d'étanchéité environnementale, GETELEC intervient auprès des acteurs du marché.

SIGNALISATION

La régulation du trafic ferroviaire est assurée par des systèmes de signalisation pilotés à partir d'électronique de puissance disposée sur l'ensemble du réseau type CBTC.

Le flux d'information généré par ces systèmes ne doit pas être entravé par des perturbations électromagnétiques. L'utilisation d'un joint de blindage CEM est nécessaire pour assurer le bon fonctionnement des systèmes.

GAMME DE PRODUITS

JOINTS SILICONES CONDUCTEURS _____

GETELEC développe ses propres mélanges conducteurs répondant aux exigences des normes MIL G 83528, MIL STD 285, GAM EG-13 et EN 455-45-2. Nos experts CEM sont à votre disposition pour vous accompagner dans la définition de vos projets. Tous ces joints sont disponibles sous forme de joints moulés, joints plats découpés, joints extrudés, joints surmoulés.

Résistivité volumique de $0.0016~\Omega.cm$ à $2.7~\Omega.cm$ Efficacité de blindage entre 80~dB à 140~dB (fréquences 20MHz-10GHz)

JOINTS SILICONES CONDUCTEURS ANTICORROSION

Les joints bi-matières sont une solution efficace aux problèmes de corrosion rencontrés lors de l'utilisation de joints conducteurs lorsque ceux-ci sont en contact avec différents agents électrolytiques, brouillard salin ou encore un milieu acide. Composés d'un silicone conducteur et d'un silicone d'étanchéité environnementale, le tout réuni en un seul et même joint par un principe de coextrusion, ils génèrent un gain en termes d'encombrement dans votre équipement.

Résistivité volumique de 0.016 Ω .cm à 2.7 Ω .cm Efficacité de blindage entre 80dB à 140 dB (Fréquences 20MHz - 10GHz)

ABSORBANTS HYPERFREQUENCES _____

La gamme d'absorbants hyperfréquences est constituée de matériaux souples en silicones chargés de particules magnétiques. Ces matériaux permettent d'obtenir d'excellentes performances sur des bandes de fréquences données, pouvant atteindre une atténuation supérieure à 20 dB de l'onde d'incidence.

Notre laboratoire a développé plusieurs formulations composées d'absorbants hyperfréquences rigides type Epoxy, d'absorbants hyperfréquences souples à base de silicone et de mousses de différentes épaisseurs.

Gamme de fréquences propres d'absorption comprises entre 1 GHz et 40 GHz

INTERFACES CONDUCTRICES THERMIQUES

Positionnés entre le composant de puissance et le refroidisseur, les matelas thermiques ont pour vocation d'optimiser la dissipation de chaleur et ainsi de réduire la résistance thermique de vos équipements.

Notre gamme complète se compose de matelas thermiques ultra-souples, d'isolants électriques conducteurs thermiques et de silicones conducteurs électriques et thermiques.

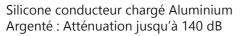
La conductivité thermique de nos produits est comprise entre 1 et 8.5 W/m.k

SILICONES D'ETANCHEITE ENVIRONNEMENTALE —

GETELEC formule ses propres mélanges silicones et en maîtrise la transformation, lui permettant d'offrir des solutions sur-mesure à ses clients.

L'utilisation de grades silicones spécifiques permet de vous proposer une gamme complète de silicones et fluorosilicones disponibles à des duretés comprises entre **20 et 90 Shore A.**

APPLICATIONS POUR LE SECTEUR FERROVIAIRE



Pad thermique pour dissipation de chaleur

Conductivité thermique: 8.5 W/m.K

Joint d'étanchéité environnementale surmoulé sur mécanique pour balise de signalisation

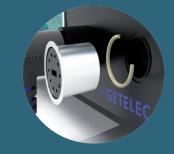
Joints silicones conducteurs anticorrosion pour bride de guide d'onde (blindage CEM)

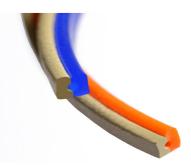
JOINTS SILICONES CONDUCTEURS

Nos matières conductrices sont développées en tous points par nos ingénieurs chimistes. De la sélection des matières premières à la transformation finale, ils réalisent des formulations spécifiques à chaque demande et maîtrisent l'ensemble des processus et procédés du développement.

Cette maîtrise nous permet de définir le matériau en fonction de vos équipements et de votre cahier des charges, afin de vous proposer une solution sur-mesure adaptée à vos besoins.

Propriétés	Normes	GT 1000	GT 5000	GT 3100	BL 10000
Type MIL G 83528		K	В		
Elastomère		Silicone	Silicone	Silicone	Silicone
Charge		Cuivre argenté	Aluminium argenté	Nickel graphite	Carbone
Résistivité volumique Ω.cm	MIL G 83528	< 0.005	< 0.0054	< 0.10	2.7
Dureté Shore A	ASTM D 2240	82	65	65	70
Densité g/cm ³	ASTM D 792 Méthode A	3.40	1.90	2	1.22
Résistance à la rupture (Mpa)	ASTM D 412 Méthode A C	2.80	1.89	1.37	4.41
Déformation rémanente après 70 heures à 100°C (%)	ASTM D 395 Méthode B	17.50	17.30	40	18
Température d'utilisation (°C)		-55 °C à +125°C	-55 °C à +160°C	-55 °C à +160°C	-55 ℃ à +125℃
Efficacité de blindage 20 MHz 100 MHz 500 MHz 2 GHz 10 GHz		130 dB 140 dB 120 dB 120 dB 120 dB	128 dB 137 dB 133 dB 122 dB 104 dB	100 dB 100 dB 100 dB 100 dB 100 dB	60 dB 105 dB 105 dB 105 dB 105 dB


POSSIBILITÉS DE MISES EN FORME:



Joint découpé

Joint moulé

JOINTS SILICONES CONDUCTEURS ANTICORROSION


En dissociant la fonction de blindage hyperfréquence de la fonction d'étanchéité environnementale, le joint devient plus résistant aux environnements extrêmes. Résistant à l'eau et à la pression, ces joints bi-matières offrent une durée de vie plus importante qu'un joint mono-matière conducteur.

Notre maîtrise des mélanges silicones permet de vous offrir un panel de matériaux présentant des caractéristiques de performances CEM, de dureté et de tenues aux contaminants multiples.

Propriétés	Normes	GT 1040	GT 1040 GT 1060		GT 5060	
Elastomère		Silicone	Silicone	Silicone	Silicone	
Charge		Cuivre a	argenté	Aluminiu	ım argenté	
Résistivité volumique Ω.cm	MIL G 83528	< 0.	005	< 0	.0054	
Dureté Shore A ± 7	ASTM D 2240	8	82		65	
Densité g/cm ³	ASTM D 7992 Méthode A	3.40		1	.90	
Résistance à la rupture (Mpa)	ASTM D 412 Méthode AC	2.20		1	.89	
Résistance au déchirement (Kg/cm)	ASTM D 624 Méthode C	13.	70	8	60	
Déformation rémanente après compression 70 heures à 100°C (%)	ASTM D 395 Méthode B	17.	.50	1	7.30	
Efficacité de blindage 20 MHz 100 MHz 500 MHz 2 GHz 10 GHz		130 dB 128 dB 140 dB 137 dB 120 dB 133 dB 120 dB 122 dB 120 dB 104 dB		7 dB 3 dB 2 dB		
Température d'utilisation (°C)		-55°C à	+125°C	-55°C	à+160°C	
	Partie silicone d'	étanchéité enviro	nnementale			
Densité g/cm ³	ASTM D 792	1.10	1.10 1.27		1.27	
Dureté shore A ± 7	ASTM D 2240	40 60		40	60	
Résistance à la traction Psi Mpa	ASTM D 412	1000 950 6.80 6.55		1000 6.80	950 6.55	
Allongement (%)	ASTM D 412	500	300	500	300	
Déformation rémanente après compression 70 heures à 100°C (%)	ASTM D 395 Méthode B	30	33	30	33	

Ces produits sont également disponibles en version fluorée sur demande.

POSSIBILITÉS DE MISES EN FORME :

Joint découpé

Joint extrudé Joint moulé

ABSORBANTS HYPERFRÉQUENCES

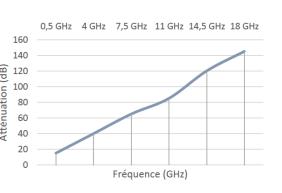
Les absorbants hyperfréquences souples

Les absorbants de la gamme GT602 ont des performances à bande étroite mais également de hautes performances en densité de puissance (>1W/cm2) permettant de les positionner sur des antennes ou des équipements de puissance élevée. L'homogénéité est assurée par un mélange complexe élaboré en interne par GETELEC.

L'ensemble de notre gamme de produits est disponible sous forme de feuilles ou de pièces découpées en forme.

Guide d'atténuation

Atténuation	Pourcentage absorbé
- 5 dB	68.38 %
-10 dB	90.00 %
-15 dB	96.84 %
-20 dB	99.00 %
-40 dB	99.99 %


Référence matière Getelec	Epaisseur (mm)	Fréquence de résonnance
GT 602 R90	4.5	1 GHz
GT 602 R90	3.2	2 GHz
GT 602 R90	2.4	3 GHz
GT 602 R90	2.2	4 GHz
GT 602 R88	2	5 GHz
GT 602 R85	2	6 GHz
GT 602 R85	1.8	7 GHz
GT 602 R85	1.6	8 GHz
GT 602 R85	1.5	9 GHz
GT 602 R85	1.3	10 GHz
GT 602 R74	1.7	11 GHz
GT 602 R71	1.6	12 GHz
GT 602 R71	1.5	13 GHz
GT 602 R71	1.45	14 GHz
GT 602 R71	1.4	15 GHz
GT 602 R71	1.3	16 GHz
GT 602 R65	1.2	17 GHz
GT 602 R65	1.15	18 GHz
GT 602 R64	1.1	24 GHz
GT 602 R63	0.95	28 GHz
GT 602 R62	1.1	35 GHz

Les plaques ou pièces finies sont également disponibles en version adhésive sur demande

Les absorbants hyperfréquences rigides - Epoxy

Propriétés	Norme	GT 502
Matière		Ероху
Dureté shore D	ASTM D 2240	95
Densité g/cm3	ASTM D 792 Méthode A	4.57
Charge de rupture Mpa	NF EN ISO 527-1	56
Allongement à la rupture %	NF EN ISO 527-1	2.4
Température d'utilisation °C		-180 °C à + 200°C

INTERFACES CONDUCTRICES THERMIQUES

La gamme GTG regroupe des matelas thermiques hautement conducteurs idéaux pour des applications nécessitant une forte conductivité thermique. Leurs formulations spécifiques développées par notre laboratoire, ainsi que leurs charges, confèrent à ces élastomères silicones une conductivité thermique exceptionnelle.

Grâce à leur grande souplesse, leur flexibilité, et leur facilité d'installation, ils épousent dès le montage, les irrégularités de surface entre le composant de puissance et le refroidisseur, favorisant ainsi la dissipation de chaleur et la protection de vos équipements.

Conductivité thermique	Dureté Shore 00	Epaisseur mm	Retardement à la flamme	RoHs	Température d'utilisation (°C)	Densité g/cm3	Elongation %	Conductivité thermique W/m.k	Rigidité diélectrique kV/mm	Tension de coupure kV/mm	Résistivité volumique Ω.m	Constante diélectrique @1Mhz	Facteur de dissipation @1MHz
Normes	ASTM D2240		UL 94			ASTM D792	ASTM D412	ASTM D 7984 Modified transient plane source(MTPS)	ASTM D149	ASTM D149	ASTM D257	ASTM D150	ASTM D150
	40 ± 5							1 ± 0.1	11	17			
	45 ± 5	0.5 \ 20					< 200	1.3 ± 0.1	5	18			
1 W/m.K	60 ± 5	0.5 à 20 mm	V0	Oui	-60°C à +200°C	2.6					10 ¹³	4	0.006
	75 ± 5	-					200	1 ± 0.1	11	17			
	85 ± 5												
	40 ± 5					2.7	100	2 ± 0.1	14	17			
	50 ± 5	0.5 à 20				2.75	< 100	2.5 ± 0.1	18	16			
2 W/m.K	60 ± 5	mm	V0	Oui	-45 °C à +200°C						10 ¹²	4.2	0.005
	75 ± 5	_				2.7	100	2 ± 0.1	14	17			
	85 ± 5												
	35 ± 5	-			2.9 < 100 3 ± 0.1 -40°C à + 200 °C 2.95 3.5 ± 0.1 11 15								
	40 ± 5	-					< 100		_	15	10 ¹¹	5.5	0.005
3 W/m.K	50 ± 5	0.5 à 20 mm	V0	Oui		2.95		3.5 ± 0.1	11				
	60 ± 5	-				2.0	100	2 . 04					
	75 ± 5	_				2.9	100	3 ± 0.1					
	85 ± 5 40 ± 5												
	60 ± 5	0.5 à 20					< 100						
4 W/m.K	75 ± 5	mm	V0	Oui	-40°C à + 200 °C	3.09	100	4 ± 0.1	16	18	10 ¹¹	7	0.008
	85 ± 5	-					100						
	40 ± 5												
	60 ± 5	0.5 à 20	_				< 50				11		
5 W/m.K	70 ± 5	mm	V0	Oui	-40°C à +200°C	3.12		5 ± 0.1	15	18	10 ¹¹	7.5	0.006
	85 ± 5						50						
	40 ± 5						. 50						
6 \\\/== \/	55 ± 5	0.8 à 20	V0	Orri	40°C 3 + 200°C	2.22	< 50	6 01	14	17	10 ¹¹	8.1	0.007
6 W/m.K	75 ± 5	mm	VU	Oui	-40°C à +200°C	3.23	50	6 ± 0.1					
	85 ± 5						30						
7.5 W/m.K	35 (-5 +20) 60 (-5 +20)	0.8 à 20 mm	V0	Oui	-40°C à +200°C	3.23	< 40	7.5 ± 0.1	10	16	10 ¹¹	7.9	0.013

SILICONES D'ÉTANCHÉITE ENVIRONNEMENTALE

L'utilisation de grades silicones spécifiques, constituant la base de nos formulations, nous a permis de développer deux grandes familles de produits au sein de notre gamme de silicones d'étanchéité environnementale : les silicones fluorés et les silicones non fluorés.

La famille des silicones fluorés : De type FVMQ (ASTM D1418), ces élastomères offrent une excellente résistance aux solvants, carburants, huiles organiques et huiles silicones, tout en conservant leurs caractéristiques mécaniques dans une large gamme

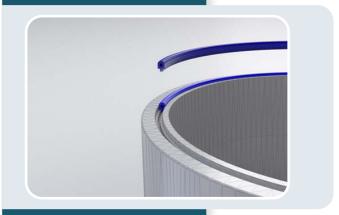
températures (-60°C à +230°C).

La famille des silicones non fluorés : De type VMQ (ASTM D 1418), ces élastomères permettent la réalisation de pièces moulées, de joints extrudés, de joints plats découpés ou adhérisés par vulcanisation. Ils conservent leurs caractéristiques mécaniques dans une large gamme de températures (-73°C à + 232°C).

Propriétés	Norme	GT 20	GT 40	GT 47	GT 50	GT 57	GT 60	GT 67	GT 70	GT 77
Elastomère		Silicone	Silicone	Fluoro- silicone	Silicone	Fluoro- silicone	Silicone	Fluoro- silicone	Silicone	Fluoro- silicone
Dureté shore A ±5	ASTM D 2240	25	40	40	50	50	60	60	70	70
Masse spécifique à 25°C (g/cm3)	ASTM D 792	1.10	1.10	1.43	1.19	1.44	1.27	1.46	1.35	1.48
Résistance à la traction PSI MPa	ASTM D 412	870 6	1000 6.80	1250 8.60	980 6.75	1200 8.45	950 6.55	1200 8.30	1000 6.89	1250 8.60
Allongement (%)	ASTM D 412	950	500	400	380	350	300	300	180	300
Déformation rémanente après 22 heures à 177°C (%)	ASTM D 395 Méthode B	20	30	20	32	25	33	25	34	25

POSSIBILITÉS DE MISES EN FORME :

Joint découpé


Joint moulé

L'EXPERTISE DE L'ETANCHÉITÉ TECHNIQUE

Prise en compte des contraintes

Notre équipe d'ingénieurs vous épaule dans la définition du produit et élabore un diagnostic à partir de votre cahier des charges. Qu'il s'agisse d'un joint extrudé ou d'une pièce technique moulée, nos expert sauront vous guider dans la conception et la réalisation.

R&D: formulation et mise en forme

La maîtrise de nos formulations élastomères permet d'apporter à nos clients des solutions sur-mesure tout en conservant une grande réactivité.

Nos ingénieurs chimistes et notre parc machine nouvelle génération apportent une grande flexibilité, permettant ainsi d'ajuster les choix de matières.

Maîtrise de la conception d'outils

Notre bureau d'étude détermine et conçoit les outils adaptés à vos projets. Cette maîtrise nous a permis d'avoir l'expertise nécessaire pour vous proposer une solution clés en main et vous accompagner durant toute la durée de votre projet.

ILS NOUS FONT CONFIANCE:

375 avenue Morane Saulnier 78530 - Buc | FRANCE

Tel: 01 39 20 42 42 infos@getelec.net

